Abstract
A micro-expression is a subtle, local and brief facial movement. It can reveal the genuine emotions that a person tries to conceal and is considered an important clue for lie detection. The micro-expression research has attracted much attention due to its promising applications in various fields. However, due to the short duration and low intensity of micro-expression movements, micro-expression recognition faces great challenges, and the accuracy still demands improvement. To improve the efficiency of micro-expression feature extraction, inspired by the psychological study of attentional resource allocation for micro-expression cognition, we propose a deep local-holistic network method for micro-expression recognition. Our proposed algorithm consists of two sub-networks. The first is a Hierarchical Convolutional Recurrent Neural Network (HCRNN), which extracts the local and abundant spatio-temporal micro-expression features. The second is a Robust principal-component-analysis-based recurrent neural network (RPRNN), which extracts global and sparse features with micro-expression-specific representations. The extracted effective features are employed for micro-expression recognition through the fusion of sub-networks. We evaluate the proposed method on combined databases consisting of the four most commonly used databases, i.e., CASME, CASME II, CAS(ME)2, and SAMM. The experimental results show that our method achieves a reasonably good performance.
Author supplied keywords
Cite
CITATION STYLE
Li, J., Wang, T., & Wang, S. J. (2022). Facial Micro-Expression Recognition Based on Deep Local-Holistic Network. Applied Sciences (Switzerland), 12(9). https://doi.org/10.3390/app12094643
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.