The optoretinogram reveals the primary steps of phototransduction in the living human eye

98Citations
Citations of this article
73Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Photoreceptors initiate vision by converting photons to electrical activity. The onset of the phototransduction cascade is marked by the isomerization of photopigments upon light capture. We revealed that the onset of phototransduction is accompanied by a rapid (<5 ms), nanometer-scale electromechanical deformation in individual human cone photoreceptors. Characterizing this biophysical phenomenon associated with phototransduction in vivo was enabled by high-speed phase-resolved optical coherence tomography in a line-field configuration that allowed sufficient spatiotemporal resolution to visualize the nanometer/millisecond-scale light-induced shape change in photoreceptors. The deformation was explained as the optical manifestation of electrical activity, caused due to rapid charge displacement following isomerization, resulting in changes of electrical potential and surface tension within the photoreceptor disc membranes. These all-optical recordings of light-induced activity in the human retina constitute an optoretinogram and hold remarkable potential to reveal the biophysical correlates of neural activity in health and disease.

Cite

CITATION STYLE

APA

Pandiyan, V. P., Maloney-Bertelli, A., Kuchenbecker, J. A., Boyle, K. C., Ling, T., Chen, Z. C., … Sabesan, R. (2020). The optoretinogram reveals the primary steps of phototransduction in the living human eye. Science Advances, 6(37). https://doi.org/10.1126/sciadv.abc1124

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free