Predicting Knee Joint Kinematics from Wearable Sensor Data in People with Knee Osteoarthritis and Clinical Considerations for Future Machine Learning Models

29Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.

Abstract

Deep learning models developed to predict knee joint kinematics are usually trained on inertial measurement unit (IMU) data from healthy people and only for the activity of walking. Yet, people with knee osteoarthritis have difficulties with other activities and there are a lack of studies using IMU training data from this population. Our objective was to conduct a proof-of-concept study to determine the feasibility of using IMU training data from people with knee osteoarthritis performing multiple clinically important activities to predict knee joint sagittal plane kinematics using a deep learning approach. We trained a bidirectional long short-term memory model on IMU data from 17 participants with knee osteoarthritis to estimate knee joint flexion kinematics for phases of walking, transitioning to and from a chair, and negotiating stairs. We tested two models, a double-leg model (four IMUs) and a single-leg model (two IMUs). The single-leg model demonstrated less prediction error compared to the double-leg model. Across the different activity phases, RMSE (SD) ranged from 7.04◦ (2.6) to 11.78◦ (6.04), MAE (SD) from 5.99◦ (2.34) to 10.37◦ (5.44), and Pearson’s R from 0.85 to 0.99 using leave-one-subject-out cross-validation. This study demonstrates the feasibility of using IMU training data from people who have knee osteoarthritis for the prediction of kinematics for multiple clinically relevant activities.

Cite

CITATION STYLE

APA

Tan, J. S., Tippaya, S., Binnie, T., Davey, P., Napier, K., Caneiro, J. P., … Campbell, A. (2022). Predicting Knee Joint Kinematics from Wearable Sensor Data in People with Knee Osteoarthritis and Clinical Considerations for Future Machine Learning Models. Sensors, 22(2). https://doi.org/10.3390/s22020446

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free