The use of supervised machine learning to develop fast and accurate interatomic potential models is transforming molecular and materials research by greatly accelerating atomic-scale simulations with little loss of accuracy. Three years ago, Jörg Behler published a perspective in this journal providing an overview of some of the leading methods in this field. In this perspective, we provide an updated discussion of recent developments, emerging trends, and promising areas for future research in this field. We include in this discussion an overview of three emerging approaches to developing machine-learned interatomic potential models that have not been extensively discussed in existing reviews: moment tensor potentials, message-passing networks, and symbolic regression.
CITATION STYLE
Mueller, T., Hernandez, A., & Wang, C. (2020, February 7). Machine learning for interatomic potential models. Journal of Chemical Physics. American Institute of Physics Inc. https://doi.org/10.1063/1.5126336
Mendeley helps you to discover research relevant for your work.