Quantification of Carbon Cycling in a Large Aquifer Using Reactive Transport Modelling

1Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Continental scale aquifers can store significant amounts of carbon as a result of immense water volumes, substantial concentrations of dissolved inorganic carbon (DIC) and its reactions with a matrix, thus contributing the global carbon storage and cycle. However, concentration of dissolved solutes may vary significantly over distances, which causes interpretative challenges and difficulties in process quantification. This occurs in the Guarani Aquifer System in South America, which is a subject of extensive research due to a significant strategic role in water supply. Dissolved CO2 is expected to dissociate and undergo reactions with aluminosilicate minerals, but it is unknown how much DIC may get immobilised in the aquifer. To quantify the processes, we performed reactive transport modelling which combines hydrological and geochemical information followed by global sensitivity analysis. We show that more than a half of the infiltrated CO2 may be consistently precipitated as CaCO3. The DIC concentrations across the aquifer depend primarily on the input carbon concentrations and the plagioclase hydrolysis rate, while other parameters including hydraulic conductivity, recharge rate and mineral stability are of the minor importance. We present how advanced modelling techniques may be used to interpret and quantify processes controlling water quality in continental scale groundwater systems.

Cite

CITATION STYLE

APA

Miotliński, K., & Peeters, L. J. M. (2021). Quantification of Carbon Cycling in a Large Aquifer Using Reactive Transport Modelling. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.714075

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free