Abstract
Low specificity and operator dependency are the main problems of breast ultrasound (US) screening. We investigated the added value of deep learning-based computer-aided diagnosis (S-Detect) and shear wave elastography (SWE) to B-mode US for evaluation of breast masses detected by screening US.Between February 2018 and June 2019, B-mode US, S-Detect, and SWE were prospectively obtained for 156 screening US-detected breast masses in 146 women before undergoing US-guided biopsy. S-Detect was applied for the representative B-mode US image, and quantitative elasticity was measured for SWE. Breast Imaging Reporting and Data System final assessment category was assigned for the datasets of B-mode US alone, B-mode US plus S-Detect, and B-mode US plus SWE by 3 radiologists with varied experience in breast imaging. Area under the receiver operator characteristics curve (AUC), sensitivity, and specificity for the 3 datasets were compared using Delong's method and McNemar test.Of 156 masses, 10 (6%) were malignant and 146 (94%) were benign. Compared to B-mode US alone, the addition of S-Detect increased the specificity from 8%-9% to 31%-71% and the AUC from 0.541-0.545 to 0.658-0.803 in all radiologists (All P
Author supplied keywords
Cite
CITATION STYLE
Kim, M. Y., Kim, S. Y., Kim, Y. S., Kim, E. S., & Chang, J. M. (2021). Added value of deep learning-based computer-aided diagnosis and shear wave elastography to b-mode ultrasound for evaluation of breast masses detected by screening ultrasound. Medicine (United States), 100(31), E26823. https://doi.org/10.1097/MD.0000000000026823
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.