In vehicular ad hoc networks, trajectory-based message delivery is a message forwarding strategy that utilizes the vehicle’s preferred driving routes information to deliver messages to the moving vehicles with the help of roadside units. For the purpose of supporting trajectory-based message delivery to a moving vehicle, the driving locations of the vehicle need to be shared with message senders. However, from a security perspective, vehicle users do not want their driving locations to be exposed to others except their desired senders for location privacy preservation. Therefore, in this paper, we propose a secure location-sharing system to allow a vehicle user (or driver) to share his/her driving trajectory information with roadside units authorized by the user. To design the proposed system, we put a central service manager which maintains vehicle trajectory data and acts as a broker between vehicles and roadside units to share the trajectory data on the cloud. Nevertheless, we make the trajectory data be hidden from not only unauthorized entities but also the service manager by taking advantage of a proxy re-encryption scheme. Hence, a vehicle can control that only the roadside units designated by the vehicle can access the trajectory data of the vehicle.
CITATION STYLE
Park, Y., Sur, C., Noh, S. W., & Rhee, K. H. (2018). Self-controllable secure location sharing for trajectory-based message delivery on cloud-assisted VANETs. Sensors (Switzerland), 18(7). https://doi.org/10.3390/s18072112
Mendeley helps you to discover research relevant for your work.