Compressive sensing spectroscopy using a residual convolutional neural network

41Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

Compressive sensing (CS) spectroscopy is well known for developing a compact spectrometer which consists of two parts: compressively measuring an input spectrum and recovering the spectrum using reconstruction techniques. Our goal here is to propose a novel residual convolutional neural network (ResCNN) for reconstructing the spectrum from the compressed measurements. The proposed ResCNN comprises learnable layers and a residual connection between the input and the output of these learnable layers. The ResCNN is trained using both synthetic and measured spectral datasets. The results demonstrate that ResCNN shows better spectral recovery performance in terms of average root mean squared errors (RMSEs) and peak signal to noise ratios (PSNRs) than existing approaches such as the sparse recovery methods and the spectral recovery using CNN. Unlike sparse recovery methods, ResCNN does not require a priori knowledge of a sparsifying basis nor prior information on the spectral features of the dataset. Moreover, ResCNN produces stable reconstructions under noisy conditions. Finally, ResCNN is converged faster than CNN.

Cite

CITATION STYLE

APA

Kim, C., Park, D., & Lee, H. N. (2020). Compressive sensing spectroscopy using a residual convolutional neural network. Sensors (Switzerland), 20(3). https://doi.org/10.3390/s20030594

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free