Abstract
Reducing the energy used in an ethanol plant is an important step towards reducing both the cost and environmental impact of the process. Pinch technology was used to analyze the energy utilization and to investigate possible energy savings in stand-alone and combined 1st and 2nd generation ethanol production plant designs. Different heat sources and sinks in the plant were identified to improve energy integration. Four different scenarios were evaluated using Aspen Plus, with heat exchanger networks generated in the simulation program Aspen Energy Analyzer. The total direct cost of the heat exchanger networks was calculated using Aspen Process Economic Analyzer. It was shown that heating costs could be reduced by 40-47% and cooling costs by 42-54% by heat integration. The sum of the discounted total direct cost for heat exchangers and annual cost of utilities was also lower in the heat integrated cases than in the corresponding non-heat integrated cases for all the configurations investigated. Heat integration showed that the heating and cooling energy demands could be reduced to a great extent in stand-alone as well as combined 1st and 2nd generation bioethanol plants. The cost for heating and cooling of the process can be decreased with heat integration. The main cost for providing the processes with heat can be attributed to the cost of hot utilities.
Cite
CITATION STYLE
Joelsson, E., Galbe, M., & Wallberg, O. (2014). Heat integration of combined 1st and 2nd generation ethanol production from wheat kernels and wheat straw. Sustainable Chemical Processes, 2(1). https://doi.org/10.1186/s40508-014-0020-3
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.