Entropy-based Bagging for fault prediction of transformers using oil-dissolved gas data

18Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The development of the smart grid has resulted in new requirements for fault prediction of power transformers. This paper presents an entropy-based Bagging (E-Bagging) method for prediction of characteristic parameters related to power transformers faults. A parameter of comprehensive information entropy of sample data is brought forward to improve the resampling process of the E-Bagging method. The generalization ability of the E-Bagging is enhanced significantly by the comprehensive information entropy. A total of sets of 1200 oil-dissolved gas data of transformers are used as examples of fault prediction. The comparisons between the E-Bagging and the traditional Bagging and individual prediction approaches are presented. The results show that the E-Bagging possesses higher accuracy and greater stability of prediction than the traditional Bagging and individual prediction approaches. © 2011 by the authors.

Cite

CITATION STYLE

APA

Zheng, Y., Sun, C., Li, J., Yang, Q., & Chen, W. (2011). Entropy-based Bagging for fault prediction of transformers using oil-dissolved gas data. Energies, 4(8), 1138–1147. https://doi.org/10.3390/en4081138

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free