Dendritic cells (DC) initiate immunity and maintain tolerance. Although in vitro-generated DC, usually derived from peripheral blood monocytes (MO-DC), serve as prototype DC to analyze the biology and biochemistry of DC, phenotypically distinct primary types of DC, including CD1c-DC, are present in peripheral blood (PB-DC). The composition of lysosomal proteases in PB-DC and the way their MHC class II-associated Ag-processing machinery handles a clinically relevant Ag are unknown. We show that CD1c-DC lack significant amounts of active cathepsins (Cat) S, L, and B as well as the asparagine-specific endopeptidase, the major enzymes believed to mediate MHC class II-associated Ag processing. However, at a functional level, lysosomal extracts from CD1c-DC processed the multiple sclerosis-associated autoantigens myelin basic protein and myelin oligodendrocyte glycoprotein in vitro more effectively than MO-DC. Although processing was dominated by CatS, CatD, and asparagine-specific endopeptidase in MO-DC, it was dominated by CatG in CD1c-DC. Thus, human MO-DC and PB-DC significantly differ with respect to their repertoire of active endocytic proteases, so that both proteolytic machineries process a given autoantigen via different proteolytic pathways
CITATION STYLE
Burster, T., Beck, A., Tolosa, E., Schnorrer, P., Weissert, R., Reich, M., … Driessen, C. (2005). Differential Processing of Autoantigens in Lysosomes from Human Monocyte-Derived and Peripheral Blood Dendritic Cells. The Journal of Immunology, 175(9), 5940–5949. https://doi.org/10.4049/jimmunol.175.9.5940
Mendeley helps you to discover research relevant for your work.