Abstract
Landslides are the most common natural hazard in British Columbia. The province has recorded the largest number of historical landslide fatalities in Canada, and damage to infrastructure comes at a great cost. In order to understand the potential impacts of landslides, radar remote sensing has become a cost-effective method for detecting downslope movements. This study investigates downslope movements in the Southern Interior of British Columbia, Canada, with Sentinel-1 and RADARSAT Constellation Mission (RCM) interferometric synthetic aperture radar (InSAR) data. The 2-dimensional time-series analysis with Sentinel-1 ascending and descending InSAR pairs from October 2017 to June 2021 observed distinct earthflow movements of up to ~15 cm/year in the east– west direction. The Grinder Creek, Red Mountain, Yalakom River, and Retaskit Creek earthflows previously documented are still active, with east–west movements of ~30 cm over the past four years. New RCM data acquired from June 2020 to September 2020 with a 4-day revisit capability were compared to 12-day Sentinel-1 InSAR pairs. The 4-day RCM InSAR pairs at higher spatial resolution showed better performance by detecting relatively small-sized slope movements within a few hundred meters, which were not clearly observed by Sentinel-1. The temporal variabilities observed from the RCM InSAR showed great potential for observing detailed slope movements within a narrower time window.
Author supplied keywords
Cite
CITATION STYLE
Choe, B. H., Blais-Stevens, A., Samsonov, S., & Dudley, J. (2021). Sentinel-1 and radarsat constellation mission insar assessment of slope movements in the southern interior of british columbia, canada. Remote Sensing, 13(19). https://doi.org/10.3390/rs13193999
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.