Nanodomain Ca2+ of Ca2+ channels detected by a tethered genetically encoded Ca2+ sensor

44Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

Abstract

Coupling of excitation to secretion, contraction and transcription often relies on Ca2+ computations within the nanodomaing-a conceptual region extending tens of nanometers from the cytoplasmic mouth of Ca 2+ channels. Theory predicts that nanodomain Ca2+ signals differ vastly from the slow submicromolar signals routinely observed in bulk cytoplasm. However, direct visualization of nanodomain Ca2+ far exceeds optical resolution of spatially distributed Ca2+ indicators. Here we couple an optical, genetically encoded Ca2+indicator (TN-XL) to the carboxy tail of Ca V 2.2 Ca2+ channels, enabling near-field imaging of the nanodomain. Under total internal reflection fluorescence microscopy, we detect Ca2+ responses indicative of large-amplitude pulses. Single-channel electrophysiology reveals a corresponding Ca2+ influx of only 0.085 pA, and fluorescence resonance energy transfer measurements estimate TN-XL distance to the cytoplasmic mouth at ∼55Å Altogether, these findings raise the possibility that Ca2+ exits the channel through the analogue of molecular portals, mirroring the crystallographic images of side windows in voltage-gated K channels. © 2012 Macmillan Publishers Limited. All rights reserved.

Cite

CITATION STYLE

APA

Tay, L. H., Dick, I. E., Yang, W., Mank, M., Griesbeck, O., & Yue, D. T. (2012). Nanodomain Ca2+ of Ca2+ channels detected by a tethered genetically encoded Ca2+ sensor. Nature Communications, 3. https://doi.org/10.1038/ncomms1777

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free