Antitumor and apoptosis-inducing effects of α-mangostin extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.) in YD-15 tongue mucoepidermoid carcinoma cells

67Citations
Citations of this article
106Readers
Mendeley users who have this article in their library.

Abstract

α-mangostin is a dietary xanthone which has been shown to have antioxidant, anti-allergic, antiviral, antibacterial, anti-inflammatory and anticancer effects in various types of human cancer cells. In the present study, we aimed to elucidate the molecular mechanisms responsible for the apoptosis-inducing effects of α-mangostin on YD-15 tongue mucoepidermoid carcinoma cells. The results from MTT assays revealed that cell proliferation significantly decreased in a dose-dependent manner in the cells treated with α-mangostin. DAPI staining illustrated that chromatin condensation in the cells treated with 15 μM α-mangostin was far greater than that in the untreated cells. Flow cytometric analysis indicated that α-mangostin suppressed YD-15 cell viability by inducing apoptosis and promoting cell cycle arrest in the sub-G1 phase. Western blot analysis of various signaling molecules revealed that α-mangostin targeted the extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) signaling pathways through the inhibition of ERK1/2 and p38 phosphorylation in a dose-dependent manner. α-mangostin also increased the levels of Bax (pro-apoptotic), cleaved caspase-3, cleaved caspase-9 and cleaved-poly(ADP-ribose) polymerase (PARP), whereas the levels of the anti-apoptotic factors, Bcl-2 and c-myc, decreased in a dose-dependent manner. The anticancer effects of α-mangostin were also investigated in a tumor xenograft mouse model. The α-mangostin-treated nude mice bearing YD-15 tumor xenografts exhibited a significantly reduced tumor volume and tumor weight due to the potent promoting effects of α-mangostin on cancer cell apoptosis, as determined by TUNEL assay. Immunohistochemical analysis revealed that the level of cleaved caspase-3 increased, whereas the Ki-67, p-ERK1/2 and p-p38 levels decreased in the α-mangostin-treated mice. Taken together, the findings of our study indicate that α-mangostin induces the apoptosis of YD-15 tongue carcinoma cells through the ERK1/2 and p38 MAPK signaling pathways.

Cite

CITATION STYLE

APA

Lee, H. N., Jang, H. Y., Kim, H. J., Shin, S. A., Choo, G. S., Park, Y. S., … Jung, J. Y. (2016). Antitumor and apoptosis-inducing effects of α-mangostin extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.) in YD-15 tongue mucoepidermoid carcinoma cells. International Journal of Molecular Medicine, 37(4), 939–948. https://doi.org/10.3892/ijmm.2016.2517

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free