MESIN PENTERJEMAH BAHASA INDONESIA-BAHASA SUNDA MENGGUNAKAN RECURRENT NEURAL NETWORKS

  • Fauziyah Y
  • Ilyas R
  • Kasyidi F
N/ACitations
Citations of this article
154Readers
Mendeley users who have this article in their library.

Abstract

Translator is a process where one language is changed into another language. Translator in the last research was carried out using a Phrase-based Statistical Machine Translation (PSMT) approach. This research builds an Indonesian to Sundanese translator. The stages used start from pre-processing using text preprocessing and word embedding Word2Vec and the approach used is Neural Machine Translation (NMT) with Encoder-Decoder architecture in which there is a Recurrent Neural Network (RNN). Tests in the study resulted in the optimal value by the GRU of 99.17%. Models using Attention got 99.94%. The use of optimization model got optimal results by Adam 99.35% and BLEU Score results with optimal bleu 92.63% and brievity penalty 0.929. The results of the machine translator produce training predictions from Indonesian to Sundanese if the input sentences are in accordance with the corpus and the translation results are not suitable when the input sentences are different from the corpus. Abstrak Penterjemah merupakan suatu proses dimana suatu bahasa diubah ke dalam bahasa lain. Penterjemah pada Penelitian lalu dilakukan dengan menggunakan pendekatan Phrase-based Statistical Machine Translation (PSMT). Penelitian ini membangun sebuah penerjemah Bahasa Indonesia ke Bahasa Sunda. Adapun tahapan yang digunakan dimulai dari pra proses menggunakan text preprocessing dan word embedding Word2Vec dan pendekatan yang digunakan yaitu Neural Machine Translation (NMT) dengan arsitektur Encoder-Decoder yang didalamnya terdapat sebuah Recurrent Neural Network (RNN). Pengujian pada penelitian menghasilkan nilai optimal oleh GRU sebesar 99,17%. Model dengan menggunakan Attention mendapat 99.94%. Penggunaan model optimasi mendapat hasil optimal oleh Adam 99.35% dan hasil BLEU Score dengan optimal bleu 92.63% dan brievity penalty 0.929. Hasil dari mesin penterjemah menghasilkan prediksi pelatihan dari Bahasa Indonesia ke Bahasa Sunda apabila input kalimat sesuai dengan korpus dan hasil terjemahan kurang sesuai ketika input kalimat berbeda dari korpus.

Cite

CITATION STYLE

APA

Fauziyah, Y., Ilyas, R., & Kasyidi, F. (2022). MESIN PENTERJEMAH BAHASA INDONESIA-BAHASA SUNDA MENGGUNAKAN RECURRENT NEURAL NETWORKS. Jurnal Teknoinfo, 16(2), 313. https://doi.org/10.33365/jti.v16i2.1930

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free