Meteorological input data requirements to predict cross-pollination of GMO Maize with Lagrangian approaches

9Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Modeling pollen dispersal to predict cross-pollination is of great importance for the ongoing discussion of adventitious presence of genetically modified material in food and feed. Two different modeling approaches for pollen dispersal were used to simulate two years of data for the rate of cross-pollination of non-GM maize (Zea mays (L.)) fields by pollen from a central 1 ha transgenic field. The models combine the processes of wind pollen dispersal (transport) and pollen competition. Both models used for the simulation of pollen dispersal were Lagrangian approaches: a stochastic particle Lagrange model and a Lagrangian transfer function model. Both modeling approaches proved to be appropriate for the simulation of the cross-pollination rates. However, model performance differed significantly between years. We considered different complexity in meteorological input data. Predictions compare well with experimental results for all simplification steps, except that systematic deviations occurred when only main wind direction was used. Concluding, it can be pointed out that both models might be adapted to other pollen dispersal experiments of different crops and plot sizes, when wind direction statistics are available. However, calibration of certain model parameters is necessary. © ISBR, EDP Sciences, 2007.

Cite

CITATION STYLE

APA

Lipsius, K., Wilhelm, R., Richter, O., Schmalstieg, K. J., & Schiemann, J. (2006). Meteorological input data requirements to predict cross-pollination of GMO Maize with Lagrangian approaches. Environmental Biosafety Research, 5(3), 151–168. https://doi.org/10.1051/ebr:2007005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free