Abstract
Abstract: Atmospheric microwave plasma was applied to the processing of the partially cleaned producer gas obtained from sewage sludge gasification. The plasma processing resulted in residual tar compounds conversion and changes in the gas composition. During the tests with a different gas flow rates and microwave power inputs, liquid and gaseous samples were collected to evaluate the plasma reactor’s performance. The conversion efficiency ranged from 19 to 100% and it depended on the specific energy input (SEI), gas flow rate, initial tar concentration, and the nature of the tars compounds. Generally, it was shown that the conversion rate increased with the SEI and that the aliphatic, cyclic and substituted compounds were converted much easier than benzene. Moreover, applying plasma led to the production of heavier aromatics (i.e. naphthalene, indene, acenaphthylene) but the rise in their concentration was significantly smaller than the amount of converted compounds. The gas composition changes revealed in the increase of H2 and CO concentration that was an effect of hydrocarbons and CO2 conversion. Additionally, it was indicated that the microwave plasma reactor’s performance was noticeably worse than in the case of the laboratory test with a simulated producer gas. This was mainly attributed to differences in the reactors’ geometry, lower hydrogen concentration and the presence of inorganic deposit on the reactor’s walls that might have inhibited microwaves transfer. In general, the microwave plasma technology seems promising in the context of cleaning and upgrading the producer gas, however, further optimization research is necessary to make it more reliable and less energy consuming. Graphic Abstract: [Figure not available: see fulltext.].
Author supplied keywords
Cite
CITATION STYLE
Wnukowski, M., Kordylewski, W., Łuszkiewicz, D., Leśniewicz, A., Ociepa, M., & Michalski, J. (2020). Sewage Sludge-Derived Producer Gas Valorization with the Use of Atmospheric Microwave Plasma. Waste and Biomass Valorization, 11(8), 4289–4303. https://doi.org/10.1007/s12649-019-00767-x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.