Abstract
Malaria is a deadly disease brought about by Plasmodium parasites which affects the general population through the bites of female mosquitoes, called "malaria vectors." There are about five parasites species that cause malaria in human body, and two of the species namely P. falciparum , P.vivax pose the greatest threat. The most prominent technique to detect malaria is by taking blood smear samples to check if the RBC is affected by parasite under the microscope by qualified experts. It is a complex technique and the diagnosis depends on the experience and inside of the person who performs the examination. Malaria blood smear have been diagnosed earlier using image processing methods based on machine learning. This was not effective so far. Convolutional Neural Network (CNN) is use in this system which helps in classifying the cells present in the blood smear images as infected or uninfected.
Cite
CITATION STYLE
Mohana*, Dr. M. … V, V. (2019). Diagnosis of Malaria from Peripheral Blood Smear Images using Convolutional Neural Networks. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 12461–12464. https://doi.org/10.35940/ijrte.d9983.118419
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.