Abstract
We report on the synthesis of manganese cobalt ferrite (MnCoFeO4) nanoparticles via a simple one-pot co-precipitation method and their characterization through energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FT-IR) spectroscopy and N2 adsorption/desorption techniques. The MnCoFeO4 supercapacitor showed the maximum specific capacitance of 675 F g-1 at a scan rate of 1 mV s-1. Its energy and power densities were 18.85 W h kg-1 and 337.50 W kg-1, respectively, at a current density of 1.5 A g-1. The cyclic stability was scrutinized via galvanostatic charging/discharging (GCD) and electrochemical impedance spectroscopy (EIS). The degradation of the supercapacitive performance was only 7.14% after 1000 GCD cycles, indicating an excellent long-term stability. The equivalent series resistance (ESR) remained nearly constant even after 1000 GCD cycles.
Cite
CITATION STYLE
Elkholy, A. E., El-Taib Heakal, F., & Allam, N. K. (2017). Nanostructured spinel manganese cobalt ferrite for high-performance supercapacitors. RSC Advances, 7(82), 51888–51895. https://doi.org/10.1039/c7ra11020k
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.