Abstract
Microwave-synthesized SiO2-reinforced B-N-co-doped reduced graphene oxide (SiO2-B-N-GO) nanocomposites were characterized by X-ray photon spectroscopy (XPS), X-ray diffraction (XRD), infrared (IR) spectroscopy, and transmission electron microscopy/energy dispersive X-ray (TEM/EDX) analysis. The tribological properties of the SiO2-B-N-GO prepared as anti-wear additives for enhanced lubrication were studied using a four-ball tester. The experiment results indicated that SiO2-B-N-GO exhibits excellent load-carrying, anti-wear, and anti-friction properties in a base oil, especially at the optimal concentration of additives at 0.15 wt%. The wear scar diameter decreased from 0.70 to 0.37 mm and the coefficient of friction was reduced from 0.092 to 0.070, which reductions are attributed to the formation of B-N and graphene layer tribofilms of several tens of nanometers in thickness that prevented direct contact between metals.
Author supplied keywords
Cite
CITATION STYLE
Xiong, S., Zhang, B., Luo, S., Wu, H., & Zhang, Z. (2021). Preparation, characterization, and tribological properties of silica-nanoparticle-reinforced B-N-co-doped reduced graphene oxide as a multifunctional additive for enhanced lubrication. Friction, 9(2), 239–249. https://doi.org/10.1007/s40544-019-0331-1
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.