Using Multiple Machine Learning Models to Predict the Strength of UHPC Mixes with Various FA Percentages

4Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Ultra High-Performance Concrete (UHPC) has shown extraordinary performance in terms of strength and durability. However, having a cost-effective and sustainable UHPC mix design is a challenge in the construction sector. This study aims on building a predictable model that can help in determining the compressive strength of UHPC. The research focuses on applying multiple machine learning (ML) models and evaluating their performance in predicting the strength prediction of UHPC. Two reliable metrics are used to evaluate the performance of the model which are the coefficient of determination (Formula presented.) and mean squared error (MSE). The parameters that are affecting the compressive strength of UHPC are fly ash percentage levels (FA%), superplasticizer content, water to binder ratio (w/b), and curing period. A total of 54 ML models were used, consisting of Linear Regression, Support Vector Machines (SVM), Neural Networks, and Random forests algorithms. Among these models, Random Forest proved to be the most effective in capturing the relationships in UHPC’s behaviour with an R squared score of 0.8857. The Random Forest ML model is also used in this paper to conduct a parametric study that will help in obtaining the compressive strength of UHPC with higher content of FA%, which is not sufficiently studied in the literature.

Cite

CITATION STYLE

APA

Safieh, H., Hawileh, R. A., Assad, M., Hajjar, R., Shaw, S. K., & Abdalla, J. (2024). Using Multiple Machine Learning Models to Predict the Strength of UHPC Mixes with Various FA Percentages. Infrastructures, 9(6). https://doi.org/10.3390/infrastructures9060092

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free