Materialistic: Selecting Similar Materials in Images

21Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Separating an image into meaningful underlying components is a crucial first step for both editing and understanding images. We present a method capable of selecting the regions of a photograph exhibiting the same material as an artist-chosen area. Our proposed approach is robust to shading, specular highlights, and cast shadows, enabling selection in real images. As we do not rely on semantic segmentation (different woods or metal should not be selected together), we formulate the problem as a similarity-based grouping problem based on a user-provided image location. In particular, we propose to leverage the unsupervised DINO [Caron et al. 2021] features coupled with a proposed Cross-Similarity Feature Weighting module and an MLP head to extract material similarities in an image. We train our model on a new synthetic image dataset, that we release. We show that our method generalizes well to real-world images. We carefully analyze our model's behavior on varying material properties and lighting. Additionally, we evaluate it against a hand-annotated benchmark of 50 real photographs. We further demonstrate our model on a set of applications, including material editing, in-video selection, and retrieval of object photographs with similar materials.

Author supplied keywords

Cite

CITATION STYLE

APA

Sharma, P., Philip, J., Gharbi, M., Freeman, B., Durand, F., & Deschaintre, V. (2023). Materialistic: Selecting Similar Materials in Images. ACM Transactions on Graphics, 42(4). https://doi.org/10.1145/3592390

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free