A computer program was developed for predicting the times of emergence, flowering, turning stage, and harvesting of processing tomatoes. The program was validated and calibrated by using 1972-1980 tomato data from 44 fields at 2 locations in Israel. Predictions are based on accumulation of heat units defined in terms of “physiological days”, where 1 physiological day is equivalent to a calendar day with a constant temperature of 26°C. The growing season was divided into 4 stages: from sowing to emergence, from emergence to flowering, from flowering to turning stage, and from turning stage to harvesting. Accumulation of physiological days during the first 2 stages is based on a linear function. During the last 2 stages, a quadratic function is used to calculate daytime heat units wherever the daily average temperature is above 20°. The maximum rate of development is at 26°. In the last stage, soil stress index also is taken into account. Use of the model makes it possible to predict the day of harvest with a precision of ±3 days, as compared with ±9 days when a daily mean systems is employed.
CITATION STYLE
Wolf, S., Rudich, J., Marani, A., & Rekah, Y. (2022). Predicting Harvesting Date of Processing Tomatoes by a Simulation Model. Journal of the American Society for Horticultural Science, 111(1), 11–16. https://doi.org/10.21273/jashs.111.1.11
Mendeley helps you to discover research relevant for your work.