The contributions of prefrontal cortex and executive control to deception: Evidence from activation likelihood estimate meta-analyses

293Citations
Citations of this article
310Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Previous neuroimaging studies have implicated the prefrontal cortex (PFC) and nearby brain regions in deception. This is consistent with the hypothesis that lying involves the executive control system. To date, the nature of the contribution of different aspects of executive control to deception, however, remains unclear. In the present study, we utilized an activation likelihood estimate (ALE) method of meta-analysis to quantitatively identify brain regions that are consistently more active for deceptive responses relative to truthful responses across past studies. We then contrasted the results with additional ALE maps generated for 3 different aspects of executive control: working memory, inhibitory control, and task switching. Deception-related regions in dorsolateral PFC and posterior parietal cortex were selectively associated with working memory. Additional deception regions in ventrolateral PFC, anterior insula, and anterior cingulate cortex were associated with multiple aspects of executive control. In contrast, deception-related regions in bilateral inferior parietal lobule were not associated with any of the 3 executive control constructs. Our findings support the notion that executive control processes, particularly working memory, and their associated neural substrates play an integral role in deception. This work provides a foundation for future research on the neurocognitive basis of deception. © The Author 2008. Published by Oxford University Press. All rights reserved.

Cite

CITATION STYLE

APA

Christ, S. E., Van Essen, D. C., Watson, J. M., Brubaker, L. E., & McDermott, K. B. (2009). The contributions of prefrontal cortex and executive control to deception: Evidence from activation likelihood estimate meta-analyses. Cerebral Cortex, 19(7), 1557–1566. https://doi.org/10.1093/cercor/bhn189

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free