Learning Context-Aware Classifier for Semantic Segmentation

19Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Semantic segmentation is still a challenging task for parsing diverse contexts in different scenes, thus the fixed classifier might not be able to well address varying feature distributions during testing. Different from the mainstream literature where the efficacy of strong backbones and effective decoder heads has been well studied, in this paper, additional contextual hints are instead exploited via learning a context-aware classifier whose content is data-conditioned, decently adapting to different latent distributions. Since only the classifier is dynamically altered, our method is model-agnostic and can be easily applied to generic segmentation models. Notably, with only negligible additional parameters and +2% inference time, decent performance gain has been achieved on both small and large models with challenging benchmarks, manifesting substantial practical merits brought by our simple yet effective method. The implementation is available at https://github.com/tianzhuotao/CAC.

Cite

CITATION STYLE

APA

Tian, Z., Cui, J., Jiang, L., Qi, X., Lai, X., Chen, Y., … Jia, J. (2023). Learning Context-Aware Classifier for Semantic Segmentation. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023 (Vol. 37, pp. 2438–2446). AAAI Press. https://doi.org/10.1609/aaai.v37i2.25340

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free