Abstract
A cobalt-catalyzed intermolecular three-component coupling of arenes, ethylene, and alkynes was developed using the well-defined air-stable cationic bis(phosphine) cobalt(I) complex, [(dcype)Co(η6-C7H8)][BArF4] (dcype = 1,2-bis(dicyclohexylphosphino)ethane; BArF4 = B[(3,5-(CF3)2)C6H3]4), as the precatalyst. All three components were required for turnover and formation of ortho-homoallylated arene products. A range of directing groups including amide, ketone, and 2-pyridyl substituents on the arene promoted the reaction. The cobalt-catalyzed method exhibited broad functional group tolerance allowing for the late-stage functionalization of two drug molecules, fenofibrate and haloperidol. A series of control reactions, deuterium labeling studies, resting state analysis, as well as synthesis of substrate- and product-bound η6-arene complexes supported a pathway involving C(sp2)-H activation from a cobalt(III) metallacycle.
Cite
CITATION STYLE
Whitehurst, W. G., Kim, J., Koenig, S. G., & Chirik, P. J. (2022). Three-Component Coupling of Arenes, Ethylene, and Alkynes Catalyzed by a Cationic Bis(phosphine) Cobalt Complex: Intercepting Metallacyclopentenes for C-H Functionalization. Journal of the American Chemical Society, 144(10), 4530–4540. https://doi.org/10.1021/jacs.1c12646
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.