Exploring the Prominent and Concealed Inhibitory Features for Cytoplasmic Isoforms of Hsp90 Using QSAR Analysis

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Cancer is a major life-threatening disease with a high mortality rate in many countries. Even though different therapies and options are available, patients generally prefer chemotherapy. However, serious side effects of anti-cancer drugs compel us to search for a safer drug. To achieve this target, Hsp90 (heat shock protein 90), which is responsible for stabilization of many oncoproteins in cancer cells, is a promising target for developing an anti-cancer drug. The QSAR (Quantitative Structure–Activity Relationship) could be useful to identify crucial pharmacophoric features to develop a Hsp90 inhibitor. Therefore, in the present work, a larger dataset encompassing 1141 diverse compounds was used to develop a multi-linear QSAR model with a balance of acceptable predictive ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR). The new developed six-parameter model satisfies the recommended values for a good number of validation parameters such as R2tr = 0.78, Q2LMO = 0.77, R2ex = 0.78, and CCCex = 0.88. The present analysis reveals that the Hsp90 inhibitory activity is correlated with different types of nitrogen atoms and other hidden structural features such as the presence of hydrophobic ring/aromatic carbon atoms within a specific distance from the center of mass of the molecule, etc. Thus, the model successfully identified a variety of reported as well as novel pharmacophoric features. The results of QSAR analysis are further vindicated by reported crystal structures of compounds with Hsp90.

Cite

CITATION STYLE

APA

Zaki, M. E. A., Al-Hussain, S. A., Bukhari, S. N. A., Masand, V. H., Rathore, M. M., Thakur, S. D., & Patil, V. M. (2022). Exploring the Prominent and Concealed Inhibitory Features for Cytoplasmic Isoforms of Hsp90 Using QSAR Analysis. Pharmaceuticals, 15(3). https://doi.org/10.3390/ph15030303

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free