Abstract
Two clinical isolates of the opportunist pathogen Pseudomonas aeruginosa named PAO1 and PA14 are commonly studied in research laboratories. Despite the isolates being closely related, PA14 exhibits increased virulence compared to that of PAO1 in various models. To determine which players are responsible for the hypervirulence phenotype of the PA14 strain, we elected a transcriptomic approach through RNA sequencing. We found 2,029 genes that are differentially expressed between the two strains, including several genes that are involved with or regulated by quorum sensing (QS), known to control most of the virulence factors in P. aeruginosa. Among them, we chose to focus our study on QslA, an antiactivator of QS whose expression was barely detectable in the PA14 strain according our data. We hypothesized that lack of expression of qslA in PA14 could be responsible for higher QS expression in the PA14 strain, possibly explaining its hypervirulence phenotype. After confirming that QslA protein was highly produced in PAO1 but not in the PA14 strain, we obtained evidence showing that a PAO1 deletion strain of qslA has faster QS gene expression kinetics than PA14. Moreover, known virulence factors activated by QS, such as (i) pyocyanin production, (ii) H2-T6SS (type VI secretion system) gene expression, and (iii) Xcp-T2SS (type II secretion system) machinery production and secretion, were all lower in PAO1 than in PA14, due to higher qslA expression. However, biofilm formation and cytotoxicity toward macrophages, although increased in PA14 compared to PAO1, were independent of QslA control. Together, our findings implicated differential qslA expression as a major determinant of virulence factor expression in P. aeruginosa strains PAO1 and PA14.
Author supplied keywords
Cite
CITATION STYLE
Sana, T. G., Lomas, R., Gimenez, M. R., Laubier, A., Soscia, C., Chauvet, C., … Bleves, S. (2021). Differential modulation of quorum sensing signaling through QslA in pseudomonas aeruginosa strains PAO1 and PA14. Journal of Bacteriology, 201(21). https://doi.org/10.1128/JB.00362-19
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.