Comparison of Crosslinking Kinetics of UV-Transparent Ethylene-Vinyl Acetate Copolymer and Polyolefin Elastomer Encapsulants

26Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Encapsulants based on ethylene-vinyl acetate copolymers (EVA) or polyolefin elastomers (POE) are essential for glass or photovoltaic module laminates. To improve their multi-functional property profile and their durability, the encapsulants are frequently peroxide crosslinked. The crosslinking kinetics are affected by the macromolecular structure and the formulation with stabilizers such as phenolic antioxidants, hindered amine light stabilizers or aromatic ultraviolet (UV) absorbers. The main objective of this study was to implement temperature-rise and isothermal dynamic mechanical analysis (DMA) approaches in torsional mode and to assess and compare the crosslinking kinetics of novel UV-transparent encapsulants based on EVA and POE. The gelation time was evaluated from the crossover of the storage and loss shear modulus. While the investigated EVA and POE encapsulants revealed quite similar activation energy values of 155 kJ/moles, the storage modulus and complex viscosity in the rubbery state were significantly higher for EVA. Moreover, the gelation of the polar EVA grade was about four times faster than for the less polar POE encapsulant. Accordingly, the curing reaction of POE was retarded up to a factor of 1.6 to achieve a progress of crosslinking of 95%. Hence, distinct differences in the crosslinking kinetics of the UV-transparent EVA and POE grades were ascertained, which is highly relevant for the lamination of modules.

Cite

CITATION STYLE

APA

Wallner, G. M., Adothu, B., Pugstaller, R., Costa, F. R., & Mallick, S. (2022). Comparison of Crosslinking Kinetics of UV-Transparent Ethylene-Vinyl Acetate Copolymer and Polyolefin Elastomer Encapsulants. Polymers, 14(7). https://doi.org/10.3390/polym14071441

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free