Abstract
This study intends to provide new TiO2/phosphorous-functionalized cellulose acetate (Ph-CA) nanocomposite membranes for direct methanol fuel cells (DMFCs). A series of TiO2/Ph-CA membranes were fabricated via solution casting technique using a systematic variation of TiO2 nanoparticle content. Chemical structure, morphological changes, and thermal properties of the as-fabricated nanocomposite membranes were investigated by FTIR, TGA, SEM, and AFM analysis tools. Further, membranes' performance, mechanical properties, water uptake, thermal-oxidative stability, and methanol permeability were also evaluated. The results clarified that the ion-exchange capacity (IEC) of the developed nanocomposite membranes improved and reached a maximum value of 1.13 and 2.01 meq/g at 25 and 80 °C, respectively, using TiO2 loading of 5 wt % compared to 0.6 and 0.81 meq/g for pristine Ph-CA membrane at the same temperature. Moreover, the TiO2/Ph-CA nanocomposite exhibited excellent thermal stability with appreciable mechanical properties (49.9 MPa). The developed membranes displayed a lower methanol permeability of 0.98 × 10-16 cm2 s-1 compared to 1.14 × 10-9 cm2 s-1 for Nafion 117. The obtained results suggested that the developed nanocomposite membranes could be potentially applied as promising polyelectrolyte membranes for possible use in DMFCs.
Cite
CITATION STYLE
Khalifa, R. E., Omer, A. M., Abd Elmageed, M. H., & Mohy Eldin, M. S. (2021). Titanium Dioxide/Phosphorous-Functionalized Cellulose Acetate Nanocomposite Membranes for DMFC Applications: Enhancing Properties and Performance. ACS Omega, 6(27), 17194–17202. https://doi.org/10.1021/acsomega.1c00568
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.