In China, existing buildings comprise more than 40 billion square meters, most being of high energy consumption. A substantial reduction in electrical energy costs could be obtained through greater use of daylight. Daylight varies widely due to the movement of sun, changing seasons and diverse weather conditions. Custom static daylight assessments, simulations represent only one time of the year or one time of the day, are inadequate to evaluate the dynamics of daylight variability. Using the intuitive graphic tool Temporal Map to display the annual daylight data, this study compared different passive architectural design strategies under the climate conditions of five representative Chinese cities and selected the most suitable design scheme for each city. In this study, the dynamic yearly-graphic tool was utilized for architectural design in China, and we integrated the optimal design with the Chinese academic calendar to achieve improvements within the occupancy time. This modified map connects design work with human activity that makes daylight evaluation more accurate and efficient. The results of this study will provide preliminary recommendations for energy-saving design in China, and reference to other similar studies.
CITATION STYLE
Guan, Y., & Yan, Y. (2016). Daylighting design in classroom based on yearly-graphic analysis. Sustainability (Switzerland), 8(7). https://doi.org/10.3390/su8070604
Mendeley helps you to discover research relevant for your work.