Causal Intervention for Human Trajectory Prediction with Cross Attention Mechanism

31Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Human trajectory Prediction (HTP) in complex social environments plays a crucial and fundamental role in artificial intelligence systems. Conventional methods make use of both history behaviors and social interactions to forecast future trajectories. However, we demonstrate that the social environment is a confounder that misleads the model to learn spurious correlations between history and future trajectories. To end this, we first formulate the social environment, history and future trajectory variables into a structural causal model to analyze the causalities among them. Based on causal intervention rather than conventional likelihood, we propose a Social Environment ADjustment (SEAD) method, to remove the confounding effect of the social environment. The core of our method is implemented by a Social Cross Attention (SCA) module, which is universal, simple and effective. Our method has consistent improvements on ETH-UCY datasets with four baseline methods and achieves competitive performances with existing methods.

Cite

CITATION STYLE

APA

Ge, C., Song, S., & Huang, G. (2023). Causal Intervention for Human Trajectory Prediction with Cross Attention Mechanism. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023 (Vol. 37, pp. 658–666). AAAI Press. https://doi.org/10.1609/aaai.v37i1.25142

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free