IL-17 plays a key role in a variety of autoimmune diseases. MCP-1 is involved in the infiltration of mononuclear cells of myocardium in VMC. However, the relationship between IL-17 and MCP-1 in myocardial injury remains unclear. In this study, expression of MCP-1 mRNA and protein in cardiac myocytes was detected with qRT-PCR and ELISA, respectively. It was found that IL-17A induced MCP-1 expression in a dose- and time-dependent manner in cardiac myocytes, which could be blocked by IL-17A and IL-17RA neutralizing antibodies. NF-κB p65 and p-p65 protein expression in cardiac myocytes was studied with western blotting. Rates of p-p65 in whole lysates and in nuclear lysates all increased in the first 15 min. Meanwhile, the amount of NF-κB p65 in whole lysates did not change, but the amount of NF-κB p65 in nuclear lysates increased in the first 15 min. Then the optimal sequence and concentration of NF-κB p65 siRNAs was selected. After transfection of 10 nM siRNA-2 of NF-κB p65 into cardiac myocytes before stimulation by IL-17A, expression of MCP-1 mRNA and protein obviously decreased. In conclusion, expression of MCP-1 induced by IL-17 requires NF-κB through the phosphorylation of p65 in cardiac myocytes, which is meaningful to study the onset of chronic viral myocarditis and will provide a new target for the treatment of viral myocarditis.
CITATION STYLE
Shen, Y., Xie, X., Li, Z., Huang, Y., Ma, L., Shen, X., … Zhao, Y. (2017). Interleukin-17-induced expression of monocyte chemoattractant protein-1 in cardiac myocytes requires nuclear factor κB through the phosphorylation of p65. Microbiology and Immunology, 61(7), 280–286. https://doi.org/10.1111/1348-0421.12495
Mendeley helps you to discover research relevant for your work.