A Liquid Crystal Elastomer-Based Unprecedented Two-Way Shape-Memory Aerogel

40Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

With the advantage of reversible shape-morphing between two different permanent shapes under external stimuli, the two-way shape-memory aerogel is expected to become a preferred aerogel for developing practical applications in actuators, sensors, robotics, and more. Herein, the first two-way shape-memory liquid crystal elastomer (LCE)-based aerogel is prepared by an orthogonal heat and light curing strategy coupled with an intermediate mechanical stretching step. The differential scanning calorimetry, temperature-varied wide-angle X-ray scattering, and polarizing optical microscope results indicate that the aerogel possesses a liquid crystal phase and the insider mesogens are well-oriented along the stretching direction. In addition to having superior compressibility and excellent shape stability, this LCE-based aerogel can perform a reversible shape deformation during the heating/cooling cycles with a shrinkage ratio of 37%. The work, that is disclosed here, realizes a truly two-way shape-memory behavior rather than the one-way shape deformation of traditional polymer aerogel materials, and may promote potential applications of this novel LCE-based aerogel material in control devices, soft actuators, and beyond.

Cite

CITATION STYLE

APA

Wang, M., Song, Y., Bisoyi, H. K., Yang, J. F., Liu, L., Yang, H., & Li, Q. (2021). A Liquid Crystal Elastomer-Based Unprecedented Two-Way Shape-Memory Aerogel. Advanced Science, 8(22). https://doi.org/10.1002/advs.202102674

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free