Parametric simulation of hybrid nanofluid flow consisting of cobalt ferrite nanoparticles with second-order slip and variable viscosity over an extending surface

53Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

This study explores the unsteady hybrid nanofluid (NF) flow consisting of cobalt ferrite (CoFe2O4) and copper (Cu) nano particulates with natural convection flow due to an expanding surface implanted in a porous medium. The Cu and CoFe2O4 nanoparticles (NPs) are added to the base fluid water to synthesize the hybrid NF. The effects of second-order velocity slip condition, chemical reaction, heat absorption/generation, temperature-dependent viscosity, and Darcy Forchheimer are also assessed in the present analysis. An ordinary differential equation system is substituted for the modeled equations of the problem. Further computational processing of the differential equations is performed using the parametric continuation method. A validation and accuracy comparison are performed with the Matlab package BVP4C. Physical constraints are used for presenting and reviewing the outcomes. With the increase in second-order velocity slip condition and unsteady viscosity, the rates of heat and mass transition increase significantly with the variation in Cu and Fe2O4 NPs. The findings suggest that the uses of Cu and Fe2O4 in ordinary fluids might be useful in the aerodynamic extrusion of plastic sheets and extrusion of a polymer sheet from a dye.

Cite

CITATION STYLE

APA

Murtaza, S., Kumam, P., Bilal, M., Sutthibutpong, T., Rujisamphan, N., & Ahmad, Z. (2023). Parametric simulation of hybrid nanofluid flow consisting of cobalt ferrite nanoparticles with second-order slip and variable viscosity over an extending surface. Nanotechnology Reviews, 12(1). https://doi.org/10.1515/ntrev-2022-0533

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free