Structural insights into conformational stability of both wild-type and mutant EZH2 receptor

370Citations
Citations of this article
441Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Polycomb group (PcG) proteins have been observed to maintain the pattern of histone by methylation of the histone tail responsible for the gene expression in various cellular processes, of which enhancer of zeste homolog 2 (EZH2) acts as tumor suppressor. Overexpression of EZH2 results in hyper activation found in a variety of cancer. Point mutation on two important residues were induced and the results were compared between the wild type and mutant EZH2. The mutation of Y641 and A677 present in the active region of the protein alters the interaction of the top ranked compound with the newly modeled binding groove of the SET domain, giving a GLIDE score of -12.26 kcal/mol, better than that of the wild type at -11.664 kcal/mol. In depth analysis were carried out for understanding the underlying molecular mechanism using techniques viz. molecular dynamics, principal component analysis, residue interaction network and free energy landscape analysis, which showed that the mutated residues changed the overall conformation of the system along with the residue-residue interaction network. The insight from this study could be of great relevance while designing new compounds for EZH2 enzyme inhibition and the effect of mutation on the overall binding mechanism of the system.

Cite

CITATION STYLE

APA

Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6. https://doi.org/10.1038/srep34984

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free