Background: The extract of Celastrus orbiculatus (COE) have been studied for anti-Helicobacter pylori (H. pylori) activity and anti-cancer effects in vitro and in vivo. However, the molecular mechanism by which COE inhibits H. pylori-induced inflammatory response has not been fully elucidated so far. Methods: The effects of COE on viability, morphological changes, inflammatory cytokine secretion, protein and mRNA expression were analyzed by MTT assay, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, western blot and real-time PCR (RT-PCR), respectively. The methylation level of programmed cell death 4 (PDCD4) promoter was investigated by methylation-specific PCR. (MSP). Results: COE effectively inhibited the H.pylori-induced inflammatory response by regulating epithelial-mesenchymal transition (EMT). The methylation level of PDCD4 promoter was suppressed by COE, which increased the expression ofPDCD4. Moreover, COE could inhibit microRNA-21 (miR-21) expression, as shown by an enhancement of its target gene PDCD4. Furthermore, both miR-21 over-expression and PDCD4 silencing attenuated the anti-inflammatory effect. of COE. Conclusions: COE inhibits H. pylori induced inflammatory response through regulating EMT, correlating with inhibition of miR-21/PDCD4 signal pathways in gastric epithelial cells.
CITATION STYLE
Zhu, Y., Liu, L., Hu, L., Dong, W., Zhang, M., Liu, Y., & Li, P. (2019). Effect of Celastrus orbiculatus in inhibiting Helicobacter pylori induced inflammatory response by regulating epithelial mesenchymal transition and targeting miR-21/PDCD4 signaling pathway in gastric epithelial cells. BMC Complementary and Alternative Medicine, 19(1). https://doi.org/10.1186/s12906-019-2504-x
Mendeley helps you to discover research relevant for your work.