Toward the identification of potential α-ketoamide covalent inhibitors for sars-cov-2 main protease: Fragment-based drug design and mm-pbsa calculations

24Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Since December 2019, the world has been facing the outbreak of the SARS-CoV-2 pandemic that has infected more than 149 million and killed 3.1 million people by 27 April 2021, according to WHO statistics. Safety measures and precautions taken by many countries seem insufficient, especially with no specific approved drugs against the virus. This has created an urgent need to fast track the development of new medication against the virus in order to alleviate the problem and meet public expectations. The SARS-CoV-2 3CL main protease (Mpro) is one of the most attractive targets in the virus life cycle, which is responsible for the processing of the viral polyprotein and is a key for the ribosomal translation of the SARS-CoV-2 genome. In this work, we targeted this enzyme through a structure-based drug design (SBDD) protocol, which aimed at the design of a new potential inhibitor for Mpro. The protocol involves three major steps: fragment-based drug design (FBDD), covalent docking and molecular dynamics (MD) simulation with the calculation of the designed molecule binding free energy at a high level of theory. The FBDD step identified five molecular fragments, which were linked via a suitable carbon linker, to construct our designed compound RMH148. The mode of binding and initial interactions between RMH148 and the enzyme active site was established in the second step of our protocol via covalent docking. The final step involved the use of MD simulations to test for the stability of the docked RMH148 into the Mpro active site and included precise calculations for potential interactions with active site residues and binding free energies. The results introduced RMH148 as a potential inhibitor for the SARS-CoV-2 Mpro enzyme, which was able to achieve various interactions with the enzyme and forms a highly stable complex at the active site even better than the co-crystalized reference.

Cite

CITATION STYLE

APA

El Hassab, M. A., Fares, M., Amin, M. K. A. H., Al-Rashood, S. T., Alharbi, A., Eskandrani, R. O., … Eldehna, W. M. (2021). Toward the identification of potential α-ketoamide covalent inhibitors for sars-cov-2 main protease: Fragment-based drug design and mm-pbsa calculations. Processes, 9(6). https://doi.org/10.3390/pr9061004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free