Global-Local Contrast Enhancement

  • SomorjeetSingh S
  • Tangkeshwar Singh T
  • Gourakishwar Singh N
  • et al.
N/ACitations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

We introduce a novel algorithm for local contrast enhancement. The algorithm exploits a background image which is estimated with an edge-preserving filter. The background image controls a gain which enhances important details hidden in underexposed regions of the input image. Our designs for the gain, edge-preserving filter and chrominance recovery avoid artifacts and ensure the superior image quality of our results, as extensively validated by user evaluations. Unlike previous local contrast methods, ours is fully automatic in the sense that it can be directly applied to any input image with no parameter adjustment. This is because we exploit a trainable decision mechanism which classifies images as benefiting from enhancement or otherwise. Finally, a novel windowed TRC mechanism based on monotonic regression ensures that the algorithm takes only 0.3 s to process a 10 MPix image on a 3 GHz Pentium.

Cite

CITATION STYLE

APA

SomorjeetSingh, S., Tangkeshwar Singh, Th., Gourakishwar Singh, N., & Mamata Devi, H. (2012). Global-Local Contrast Enhancement. International Journal of Computer Applications, 54(10), 7–11. https://doi.org/10.5120/8600-2365

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free