A three-dimensional radially anisotropic model of shear velocity in the whole mantle

365Citations
Citations of this article
195Readers
Mendeley users who have this article in their library.

Abstract

We present a 3-D radially anisotropic S velocity model of the whole mantle (SAW642AN), obtained using a large three component surface and body waveform data set and an iterative inversion for structure and source parameters based on Non-linear Asymptotic Coupling Theory (NACT). The model is parametrized in level 4 spherical splines, which have a spacing of ∼ 8°. The model shows a link between mantle flow and anisotropy in a variety of depth ranges. In the uppermost mantle, we confirm observations of regions with VSH > VSV starting at ∼80 km under oceanic regions and ∼200 km under stable continental lithosphere, suggesting horizontal flow beneath the lithosphere. We also observe a VSV > VSH signature at ∼150-300 km depth beneath major ridge systems with amplitude correlated with spreading rate for fast-spreading segments. In the transition zone (400-700 km depth), regions of subducted slab material are associated with VSV > VSH, while the ridge signal decreases. While the mid-mantle has lower amplitude anisotropy (<1 per cent), we also confirm the observation of radially symmetric VSH > VSV in the lowermost 300 km, which appears to be a robust conclusion, despite an error in our previous paper which has been corrected here. The 3-D deviations from this signature are associated with the large-scale low-velocity superplumes under the central Pacific and Africa, suggesting that VSH > VSV is generated in the predominant horizontal flow of a mechanical boundary layer, with a change in signature related to transition to upwelling at the superplumes. © 2006 The Authors Journal compilation © 2006 RAS.

Cite

CITATION STYLE

APA

Panning, M., & Romanowicz, B. (2006). A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal International, 167(1), 361–379. https://doi.org/10.1111/j.1365-246X.2006.03100.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free