Convex image segmentation model based on local and global intensity fitting energy and split Bregman method

21Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We propose a convex image segmentation model in a variational level set formulation. Both the local information and the global information are taken into consideration to get better segmentation results. We first propose a globally convex energy functional to combine the local and global intensity fitting terms. The proposed energy functional is then modified by adding an edge detector to force the active contour to the boundary more easily. We then apply the split Bregman method to minimize the proposed energy functional efficiently. By using a weight function that varies with location of the image, the proposed model can balance the weights between the local and global fitting terms dynamically. We have applied the proposed model to synthetic and real images with desirable results. Comparison with other models also demonstrates the accuracy and superiority of the proposed model. Copyright © 2012 Yunyun Yang and Boying Wu.

Cite

CITATION STYLE

APA

Yang, Y., & Wu, B. (2012). Convex image segmentation model based on local and global intensity fitting energy and split Bregman method. Journal of Applied Mathematics, 2012. https://doi.org/10.1155/2012/692589

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free