Proposal of a clinical decision tree algorithm using factors associated with severe dengue infection

38Citations
Citations of this article
107Readers
Mendeley users who have this article in their library.

Abstract

Background: WHO's new classification in 2009: dengue with or without warning signs and severe dengue, has necessitated large numbers of admissions to hospitals of dengue patients which in turn has been imposing a huge economical and physical burden on many hospitals around the globe, particularly South East Asia and Malaysia where the disease has seen a rapid surge in numbers in recent years. Lack of a simple tool to differentiate mild from life threatening infection has led to unnecessary hospitalization of dengue patients. Methods: We conducted a single-centre, retrospective study involving serologically confirmed dengue fever patients, admitted in a single ward, in Hospital Kuala Lumpur, Malaysia. Data was collected for 4 months from February to May 2014. Socio demography, co-morbidity, days of illness before admission, symptoms, warning signs, vital signs and laboratory result were all recorded. Descriptive statistics was tabulated and simple and multiple logistic regression analysis was done to determine significant risk factors associated with severe dengue. Results: 657 patients with confirmed dengue were analysed, of which 59 (9.0%) had severe dengue. Overall, the commonest warning sign were vomiting (36.1%) and abdominal pain (32.1%). Previous co-morbid, vomiting, diarrhoea, pleural effusion, low systolic blood pressure, high haematocrit, low albumin and high urea were found as significant risk factors for severe dengue using simple logistic regression. However the significant risk factors for severe dengue with multiple logistic regressions were only vomiting, pleural effusion, and low systolic blood pressure. Using those 3 risk factors, we plotted an algorithm for predicting severe dengue. When compared to the classification of severe dengue based on the WHO criteria, the decision tree algorithm had a sensitivity of 0.81, specificity of 0.54, positive predictive value of 0.16 and negative predictive of 0.96.

Cite

CITATION STYLE

APA

Tamibmaniam, J., Hussin, N., Cheah, W. K., Ng, K. S., & Muninathan, P. (2016). Proposal of a clinical decision tree algorithm using factors associated with severe dengue infection. PLoS ONE, 11(8). https://doi.org/10.1371/journal.pone.0161696

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free