Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers

49Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We propose a hybrid sequential prediction model called “Deep Sequence”, integrating radiomics-engineered imaging features, demographic, and visual factors, with a recursive neural network (RNN) model in the same platform to predict the risk of exudation within a future time-frame in non-exudative AMD eyes. The proposed model provides scores associated with risk of exudation in the short term (within 3 months) and long term (within 21 months), handling challenges related to variability of OCT scan characteristics and the size of the training cohort. We used a retrospective clinical trial dataset that includes 671 AMD fellow eyes with 13,954 observations before any signs of exudation for training and validation in a tenfold cross validation setting. Deep Sequence achieved high performance for the prediction of exudation within 3 months (0.96 ± 0.02 AUCROC) and within 21 months (0.97 ± 0.02 AUCROC) on cross-validation. Training the proposed model on this clinical trial dataset and testing it on an external real-world clinical dataset showed high performance for the prediction within 3-months (0.82 AUCROC) but a clear decrease in performance for the prediction within 21-months (0.68 AUCROC). While performance differences at longer time intervals may be derived from dataset differences, we believe that the high performance and generalizability achieved in short-term predictions may have a high clinical impact allowing for optimal patient follow-up, adding the possibility of more frequent, detailed screening and tailored treatments for those patients with imminent risk of exudation.

Cite

CITATION STYLE

APA

Banerjee, I., de Sisternes, L., Hallak, J. A., Leng, T., Osborne, A., Rosenfeld, P. J., … Rubin, D. (2020). Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72359-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free