Generalized dice similarity measures for q-rung orthopair fuzzy sets with applications

30Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recently, Yager has established that the notion of q-rung orthopair fuzzy set (q-ROFS) is more accomplished than pythagorean fuzzy set (PyFS) and intuitionistic fuzzy set (IFS) to cope with awkward and complicated information in real decision theory. This notion works with yes-, no- and refusal-type fuzzy information. The constraint of q-ROFS is that the sum of n-power of the truth grade and the n-power of the falsity grade is bounded to unit interval. Generalized dice similarity measures are complimentary concepts quantifying the difference and closeness of q-ROFSs. In this paper, we suggested a number of novel dice similarity measures (DSMs) in the surroundings of the q-ROFS, and we examined some prevailing dice similarity measures and their limitations. In addition, we took the DSMs broad view to some globalized dice similarity measures (GDSMs), and we examined some of their particular cases. We employed the novel suggested GDSMs to the best selections of items on identification problems, and we analyzed their acquired consequences. There is a development of novel work in which many situations are evaluated, and from this perspective, the suggested work is changed into already prevailing work. This study also examines the merits of novel DSMs and the limitations for DSMs of IFSs and PyFSs. The comparison between established measures with existing measures is explored and their graphical interpretations are also discussed to show the reliability and effectiveness of the explored measures.

Cite

CITATION STYLE

APA

Jan, N., Zedam, L., Mahmood, T., Rak, E., & Ali, Z. (2020). Generalized dice similarity measures for q-rung orthopair fuzzy sets with applications. Complex and Intelligent Systems, 6(3), 545–558. https://doi.org/10.1007/s40747-020-00145-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free