Messaging activity reconstruction with sentiment polarity identification

2Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sentiment Analysis aims to extract information related to the emotional state of the person that produced a text document and also describe the sentiment polarity of the short or long message. This kind of information might be useful to a forensic analyst because it provides indications about the psychological state of the person under investigation at a given time. In this paper we use machine-learning algorithms to classify short texts (SMS), which could be found in the internal memory of a smartphone and extract the mood of the person that sent them. The basic goal of our method is to achieve low False Positive Rates. Moreover, we present two visualization schemes with the intention to provide the ability to digital forensic analysts to see graphical representations of the messaging activity of their suspects and therefore focus on specific areas of interest reducing their workload.

Cite

CITATION STYLE

APA

Andriotis, P., & Oikonomou, G. (2015). Messaging activity reconstruction with sentiment polarity identification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9190, pp. 475–486). Springer Verlag. https://doi.org/10.1007/978-3-319-20376-8_42

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free