Collection-limited theory interprets the extraordinary response of single semiconductor organic solar cells

28Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

Abstract

The bulk heterojunction (BHJ) organic photovoltaic (OPV) architecture has dominated the literature due to its ability to be implemented in devices with relatively high efficiency values. However, a simpler device architecture based on a single organic semiconductor (SS-OPV) offers several advantages: it obviates the need to control the highly system-dependent nanoscale BHJ morphology, and therefore, would allow the use of broader range of organic semiconductors. Unfortunately, the photocurrent in standard SS-OPV devices is typically very low, which generally is attributed to inefficient charge separation of the photogenerated excitons. Here we show that the short-circuit current density from SS-OPV devices can be enhanced significantly (∼100-fold) through the use of inverted device configurations, relative to a standard OPV device architecture. This result suggests that charge generation may not be the performance bottleneck in OPV device operation. Instead, poor charge collection, caused by defect-induced electric field screening, is most likely the primary performance bottleneck in regular-geometry SS-OPV cells. We justify this hypothesis by: (i) detailed numerical simulations, (ii) electrical characterization experiments of functional SS-OPV devices using multiple polymers as active layer materials, and (iii) impedance spectroscopy measurements. Furthermore, we show that the collectionlimited photocurrent theory consistently interprets typical characteristics of regular SS-OPV devices. These insights should encourage the design and OPV implementation of high-purity, high-mobility polymers, and other soft materials that have shown promise in organic field-effect transistor applications, but have not performed well in BHJ OPV devices, wherein they adopt less-than-ideal nanostructures when blended with electron-accepting materials.

Cite

CITATION STYLE

APA

Ray, B., Baradwaj, A. G., Khan, M. R., Boudouris, B. W., & Alam, M. A. (2015). Collection-limited theory interprets the extraordinary response of single semiconductor organic solar cells. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11193–11198. https://doi.org/10.1073/pnas.1506699112

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free