New oxidovanadium(IV) complexes with 2,2′-bipyridine and 1,10-phenathroline ligands: Synthesis, structure and high catalytic activity in oxidations of alkanes and alcohols with peroxides

27Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Reactions of [VCl3(thf)3] or VBr3 with 2,2′-bipyridine (bpy) or 1,10‐-phenanthroline (phen) in a 1:1 molar ratio in air under solventothermal conditions has afforded polymeric oxidovanadium(IV) four complexes 1‒4 of a general formula [VO(L)X2]n (L = bpy, phen and X = Cl, Br). Monomeric complex [VO(DMF)(phen)Br2] (4a) has been obtained by the treatment of compound 4 with DMF. The complexes were characterized by IR spectroscopy and elemental analysis. The crystal structures of 3 and 4a were determined by an X‐-ray diffraction (XRD) analysis. The {VOBr2(bpy)} fragments in 3 form infinite chains due to the V = O…V interactions. The vanadium atom has a distorted octahedral coordination environment. Complexes 1‒4 have been tested as catalysts in the homogeneous oxidation of alkanes (to produce corresponding alkyl hydroperoxides which can be easily reduced to alcohols by PPh3) and alcohols (to corresponding ketones) with H2O2 or tert‐-butyl hydroperoxide in MeCN. Compound 1 exhibited the highest activity. The mechanism of alkane oxidation was established using experimental selectivity and kinetic data and theoretical DFT calculations. The mechanism is of the Fenton type involving the generation of HO• radicals.

Cite

CITATION STYLE

APA

Fomenko, I. S., Gushchin, A. L., Abramov, P. A., Sokolov, M. N., Shul’pina, L. S., Ikonnikov, N. S., … Shul’pin, G. B. (2019). New oxidovanadium(IV) complexes with 2,2′-bipyridine and 1,10-phenathroline ligands: Synthesis, structure and high catalytic activity in oxidations of alkanes and alcohols with peroxides. Catalysts, 9(3). https://doi.org/10.3390/catal9030217

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free