Dynamic Service Function Chain Deployment and Readjustment Method Based on Deep Reinforcement Learning

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

With the advent of Software Defined Network (SDN) and Network Functions Virtualization (NFV), network operators can offer Service Function Chain (SFC) flexibly to accommodate the diverse network function (NF) requirements of their users. However, deploying SFCs efficiently on the underlying network in response to dynamic SFC requests poses significant challenges and complexities. This paper proposes a dynamic SFC deployment and readjustment method based on deep Q network (DQN) and M Shortest Path Algorithm (MQDR) to address this problem. We develop a model of the dynamic deployment and readjustment of the SFC problem on the basis of the NFV/SFC network to maximize the request acceptance rate. We transform the problem into a Markov Decision Process (MDP) and further apply Reinforcement Learning (RL) to achieve this goal. In our proposed method (MQDR), we employ two agents that dynamically deploy and readjust SFCs collaboratively to enhance the service request acceptance rate. We reduce the action space for dynamic deployment by applying the M Shortest Path Algorithm (MSPA) and decrease the action space for readjustment from two dimensions to one. By reducing the action space, we decrease the training difficulty and improve the actual training effect of our proposed algorithm. The simulation experiments show that MDQR improves the request acceptance rate by approximately 25% compared with the original DQN algorithm and 9.3% compared with the Load Balancing Shortest Path (LBSP) algorithm.

Cite

CITATION STYLE

APA

Ran, J., Wang, W., & Hu, H. (2023). Dynamic Service Function Chain Deployment and Readjustment Method Based on Deep Reinforcement Learning. Sensors, 23(6). https://doi.org/10.3390/s23063054

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free