Pt Nanoparticles Loaded on W18O49 Nanocables-rGO Nanocomposite as a Highly Active and Durable Catalyst for Methanol Electro-Oxidation

15Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Highly active and durable electrocatalysts are vital for commercialization of direct methanol fuel cells. In this work, a three-dimensional nanocomposite consisting of platinum nanoparticles, W18O49 nanocables, and reduced graphene oxide composite (Pt/W18O49 NCs-rGO) has been prepared as an electrocatalyst for methanol oxidation reaction (MOR). The catalyst is prepared through a two-step method. The W18O49 nanocables and the reduced graphene oxide composite are prepared by a solvothermal process. Then, Pt nanoparticles are loaded on the W18O49 nanocables and the reduced graphene oxide composite by a hydrogen reduction at ambient condition. The obtained catalyst has a special three-dimensional architecture consisting of two-dimensional nanosheets, assembled one-dimensional nanocables, and the loaded nanoparticles on their surface. The Pt/W18O49 NCs-rGO catalyst shows 1.56 time mass activities than the Pt/C, with the current density of the forward anodic peak reaching 1624 mA/mgPt at 0.854 V versus reversible hydrogen electrode potential in 0.1 M HClO4 and 0.5 M CH3OH mixed electrolyte. It also shows a strong antipoisoning property toward CO. For the durability testing, the current density of Pt/W18O49 NCs-rGO shows a 37% decay, whereas the current of Pt/C catalyst shows a 41% degradation from 600 to 3600 s at 0.7 V. The high activity toward MOR, good antipoisoning for intermediate products, and excellent stability are ascribed to strong metal-support interaction effects between the Pt nanoparticles and the W18O49 NCs.

Cite

CITATION STYLE

APA

Wang, Y., Wang, S., Li, F., Wang, Y., Zhang, H., & Sun, C. (2018). Pt Nanoparticles Loaded on W18O49 Nanocables-rGO Nanocomposite as a Highly Active and Durable Catalyst for Methanol Electro-Oxidation. ACS Omega, 3(12), 16850–16857. https://doi.org/10.1021/acsomega.8b02942

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free