A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex

31Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Uncovering whether convergent adaptations share a genetic basis is consequential for understanding the evolution of phenotypic diversity. This information can help us understand the extent to which shared ancestry or independent evolution shape adaptive phenotypes. In this study, we first ask whether the same genes underlie polymorphic mimicry in Papilio swallowtail butterflies. By comparing signatures of genetic variation between polymorphic and monomorphic species, we then investigate how ancestral variation, hybridization, and independent evolution contributed to wing pattern diversity in this group. We report that a single gene, doublesex (dsx), controls mimicry across multiple taxa, but with species-specific patterns of genetic differentiation and linkage disequilibrium. In contrast to widespread examples of phenotypic evolution driven by introgression, our analyses reveal distinct mimicry alleles. We conclude that mimicry evolution in this group was likely facilitated by ancestral polymorphism resulting from early co-option of dsx as a mimicry locus, and that evolutionary turnover of dsx alleles may underlie the wing pattern diversity of extant polymorphic and monomorphic lineages.

Cite

CITATION STYLE

APA

Palmer, D. H., & Kronforst, M. R. (2020). A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex. Nature Communications, 11(1). https://doi.org/10.1038/s41467-019-13859-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free